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The anthor comsiders systems of differentisl equations with after-effect
that comtainm a small parameter as a coefficient of the derivatives. On
the basis of the given wniform asymptotic stability of the degenerate
system of differential eguations, amd of the uniform stepwise asymptotic
stability of a certain auxiliary system, he establishes the unifornm
asymptotic stability of the original system. The problems are treated
by the Liapumov-Chetaev [1,21 method developed for systems of equations
with after-effect by Krasovskii [3 ]. 1t is mentiomed that problems on
the stability of systems of differemtial equations with after-effect
containing a small parameter were considered by El’sgol’'ts [4]1. The
present work extends certain results of Krasovskii [5] to systems with
after-effect.

1. Limear systems. We consider a system of differential equations
with after-effect of the form

:i =§ ay ()= + E.bi’(t)yt'*‘z o (8) x (¢ —0)

=1

&y = e i i=1,...
pa=Da®n+ D duOn+ I baOne—0  (Z7077)
=1 =i b=1 e
Zio=Ein(t) whem to—0<ti<<ts,  Yio=Pio (1.1)

where p is a positive small parameter, and 0 is the delay constant
(time lag).
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Let us assume that the coefficients a; (1), b; (t) a‘l(t), c.: l(t)
d. (t), and B l(t) are continuous bounded funct1ons of the argument t
wﬂ1ch have contlnuous bounded derivatives for values of t such that
t, < t < o . Furthermore, we assume that the following condition is satis-
fied,
du (). . .dy, (1)

.........

dy (8). . -dy, (1)

>B>0 (1.2)

The degenerate system of the original system has the form

dz i - “
2 =2 a®u+ A b+ D oaw@nlt—0  (=t1,..,m (1.3)

=1 =1 =1
Ac@m+ 2 di®y+ 2B aE—0=0  (G=1,...n (1.4
=1 =1 =1

Zio = gio (t) when to— 0 <t <ty

We denote by x, = x,(¢, u) and Yj=7; .(t, p) the solution of the
system (1.1), and by the symbols x, e % {t) and yj= y](t) the solution
of the degenerate system (1.3), (1. 4)

The solution of the system of n linear algebraic Equations (1.4) for
¥1» +++» ¥, has the form

m

Vo= DA Oz + D 1a®TE—8  (s=1,....m  (15)

=1 =1
Here A _,(t) and y,;(t) are bounded continuous functions of t.

The substitution of the Expressions (1.5) into the first m Equations
(1.3) of the degenerate system leads to a system of m differential equa-
tions with after-effect

—menm+2nwnm—m (1.6)

k=1 k=1
Here r;,(¢) and 'ik(t) are continuous bounded functions of t.

We will call the system
dy; >
SE=2di®¥%  (G=t...n a.7
s=1

of n linear differential equations with variable coefficients, the
auxiliary system of equations.
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We shall show in the sequel that for sufficiently small values of the
parameter p, and ‘under certain conditions, the trajectory of the original
system (1.1) tends to the trajectory of the degenerate system of Equa-
tions (1.3) and (1.4), and we shall show also that the stability of the
auxiliary systems implies the stability of the solution of the original
system (1.1).

Theorem 1.1. Suppose that the following conditions hold for the
systems of equations with after-effect (1.1) and for the corresponding
degenerate system (1.3), (1.4):

a) the system of differential equations with after-effect (1.6) is
uniformly asymptotically stable;

b) for every fixed value of w the systems of equations

m&?.— ::2 djs(©) Ys (G=1,...,n) (1.8)

with constant coefficients are asymptotically stable, uniformly in
a)EBKto,w] (or, what is the same thing, the roots of the characteristic
equation |d. -p&. | = 0 satisfy the conditionRe p < -~ A, Ais a

o Js J¢ P Je
positive constant, Sjs =0if j # ¢, and 8j‘ =1if j=s).

Under these conditions the following assertions are valid.

1) For every given ¢ > 0, there exists a number p, such that the
following inequalities hold:

zi(t, ) —zi ()| <e, |y;(tp)—yi()<e whemt >, p<p (1.9)

2) For sufficiently small p,, the original system of differential
equations with after-effect is asymptotically stable.

3) For a given solution of the degenerate system (1.3), (1.4) and
for every @ > 0, there exists a sufficiently small p, such that the
number ¢, of the condition (1.9) differs from the number t, by less than
a given number & > ( for all initial conditions iyj(tu, 1) - yoltl <Q.

Proof, We introduce new variables fi and N by means of the equations
Ei(t, w) ==z, (¢, p) —z; (2)

m m
0 (6 By =y;(t B — D) Ay, (=, (6 W) — D) 1;, (7, (¢ — 6, p)
=1 s=1
Let us construct the differentisl equations of the disturbed motion
which will be satisfied by the variables §i and 7 These equations must
be constructed separately for values of t between ty and t, + 6, and for
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t greater than tj + 0.
dg; (& p)  dz (¢, p)  dz ()
e . dt dz

dn;(t, p) _dy;(6, ) % dx,., )
dt dt

dz, (‘ B

z, (¢, p)— 2 Ajs ()

8=1 8§=]
H4
—2 ”’” z (t—8, p)—Zr,, (t);‘———"-’
=1
On the basis of these equations we have
a) when tH<Ct<Cto+ 0

d . , m m n
S S e W+ D O8E—8 1 — 3 b0, )

=1 =1 =1

dn; (;t ») :% M d; (O, (6, w)— 21 LJk(z)[Z P 0 E B+
s=1

k—l {=

+ D Ot e—0 w]- 3 Ll )—-Z Mg 0, w—

=1 k=1

m m ;"
— D O X rg 20 + S g 012, ¢ — 0]- 2 -

k=1 f=1 f=1 k—l

m dry. m
~2 T;zl:(t)”l (t—0)— Z T () —gli)—z Mk (8) Z b (DN, (6 1) (1.10)

{=1 8=]

b) whea t >+ 0

d ] )
B —Z OB+ D OB =0, 1+ 3 b @0, )

I=1 8=1

dn.(t, p)
W ‘—Z"n“’"s(‘ M — ZMM[E P () B (8 1)+

$=1 k=1 =

< Fhyult) dy ;) (2)
+2r,,,(t)§,(t—e,p)]—2 ”‘ B (b 1) — 2 it

k=1 =1

— 2 ’*:k(‘)[Z rig (07, (1) + 2 Ty (02, (6 — e)]_ S i) z, () —

=1 f=1 k=1 dt

m

“Z 1,,() 7, (t — e)—ZT,-,(t)[Z (8 (t—8, w)+

=1 =1 f=1

+ 2 T 08 —20, u)]— >t (t)[ Dz (6 —0) + Z T () 2 (t—zo)]—
f=1 1=1 k=1

— D A0 D) by, (D, (8, ) — 2‘, 11 () 2‘. b, ()0, (¢ — 0, p) (1.11)

k=1 8==1 =1 =1
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For the proof of the theorem one must show that the solutions fiit,y},
Qj(t, #) of the systems (1.10) and (1.11) satisfy the following condi-
tions: for every given set of numbers Q, ¢ and & there exists a number
Ko > O such that for the given initial values £, = 0 when ty ~ 6 < ¢t <
to, |77ij| < Q it is true that £ (t, | <e, mj(t, w)| < € when
t> t, + 3, provided p < o

By the hypotheses of the theorem, the system of differential equations
with after-effect (1.6) is uniformly asymptotically stable. Hence there
exists for it a positive definite functional vl fl(ﬁ), fz(ﬁ). ey
f,(ﬁ). t] = ol fi(ﬁ), t] for which the following inequality is valid

al MBS0, U< el (P {1.12)
and such that its derivative, in view of (1.68), satisfies the inequality

dv [§1 (8, ¢

a Losl| &) (1.13)

Furthersore, we have the ineguality

— (®), t]—v [, (8), eI _
fim - &, (@) — &, D] =& (®) ]

(1.14)

where c,, ¢,, ¢ and ¢, are positive numbers, and [3 (Section 33y ]

15 O =sp P EEB T FES ) for t—W <<t

We note that in [ 3 (Sectiom 33) ], there is established the existence
of a functional v[ z,(8), t] satisfying the inequalities

alz @< (), 1<alz@®)], , Av
[o[z" (8), (] —2 [ (8), t]<callz” (§) —a' (8)], 1 SUP (Es‘)fsg.ﬁ Salz(®)

where ¢;, ¢,, ¢, and ¢, are positive numbers, and || =(8) || = sup |z, ()]
when — 6 < 9 <0. By considerations similar to those of [3 ], one can
establish the existence of a functional satisfying the inequalities
given here,

Prom the second condition of the theorem it follows that the system
(1.7) is asymptotically stable, uniformly in @, for all values of w
and hence, there exists, for the system (1.7), a positive definite
quadratic form w(w, 7,, ..., N,)= #(w, 7,) whose total derivative is
negative definite in view of the system (1.7) (when @ = const). Hereby
the partial derivatives J»/do will be bounded and the inequalities of
the positive definiteness and negative definitenmess of »(w, 7;) and
(d-/dt)(1.7), respectively, will hold uniformly in w.
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Let us construct a positive definite functional of the form
ult, & (8), n;1=v[E;(8), ] +w(t, n) (1.15)

We shall show that for small enough p the functional satisfies the
conditions of the Theorem (31.4) of [3 (p.195)] in the region || £ > ¥,
||7j|| > M.

The total derivative of the functional ul ¢, £.(#), 7, ] has, in view
of (1.10), the form

(ded ), n] (2 18O 2) dw(t, 1,
dt (1.10) = dt (1.7) + Fu(t, gi’ nj) + at +
n a , . n m m
e ) S du@n, 0 — 3 250 [ 3 @8 @ w+
j=1 on; Loy k=1 =1
- < dhi(t = dy., (¢
AT OE—0, B]= 3 # e ow— 3110 g, -
1=1 k=1 =1
m m‘ m m dA,.
— S au [Z Py Oz, O+ D) Ty () 7y ¢ — 9)]_ ) ;:(t) 2y () —
k=1 f=1 =1 k=1
-3 ‘%(‘) 7 (t—0) — X 151 (®) g;ot( )_ D1 A D) by (1) m, (¢, p)} {1.16)
1=1 =1 Kzl 8=t

Here, the symbol Fi(t, fi, 7 ;) denotes all terms of the derivative of
the functional V[fi(ﬁ)- t], found by means of the first = equations of
the disturbed motion (1.10), that contaim as factors the quantities
bil(nnl(m w + ... +-bin(0qn(n n.

Keeping in mind the properties of the functional v[fi(ﬂ). t] and of
the function w(t, nj), one can derive from (1.18) the inequality (1.17)

(1t 80, vy Dy S~ CoNER Mol 3 n o)+ [- é o)+

s=1

+ M50 (D n,’(t))l/'+ M(3) n.”(t))%-{- Ny S (1) (1.47)
=1 8=1 8=1

where M*, Nl, N2 and N3 are some numbers. The right-hand side of this
inequality (1.17) is a quadratic form in || {;[| = p, and[|qj[|= o if one
drops in it the next to the last ternm.

For sufficiently small p, this form is negative definite. Hence, for
such pu, the left-hand side of the inequality (1.17) is less than zero
outside a neighborhood of the point fi = 0, nj = 0. This reasoning is
analogous to that found in [5 ].
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In view of the system (1.11), the total derivative of the functiodal
alt, £,00), v;}-} will, for t> t, + 6, have the form

ow (t ;) +

du [, §;(9), n;] dv [E, (), 1]
( dt ’ )(l 11) =[ Jdt ](155) Fa(t, & 7]_1)“}”

dwt,
vy L S g0t zx)-—Z%k“’[E T (8 )+

g
M 8==1 k=1 =1

j==1
s A
+ Y @80 1] - 2 0 w 2‘“2“ ) b =0, p)—
=) k=1 [ 2]
S S & T, dhyd)
- 2 ’“;%(‘)[2 ry Bz (1) + Z Ty () 2, (2 — 8)] d 2 (t)—
Rl fu=1 k=1
S 410 < <
=1 Je=] Je=1 =1
m "
— 1@ X @ = 6—0)+ 30 7 t—20)]~
=1 K=l k=1
m n m n
— ) Al D) B () 1, (8, 1) — D) 1 () D) by () 1, (2 B, m} (1.18)
i=1 (25 ) Tuxy 8=1

The symbel Fy(t, fi, 7.) denotes here the terms of the derivative
v[£, ®), t] which contain as factors the quantities b;;()n,(t, p) +
- b (0 (8, ).

Prom the Equation (1.18) one can deduce the following inequality

(b E‘f}’ L )y S—oIEEF M*c:ﬁ%iﬁ(é nawm)"+
+ - 2’4,’(!)]-&- M n(z n2®)"+ M lnm) +
+Ns},,1n,‘ () + Na 211,‘(2))/’(2 n2t—0)" (1.19)
=
where N*, N;, N,, N; and N, are some numbers.
Let us consider the curves
5} nie—0<eg i n2 {8 (1.20}

s==} =1

where g is some number. On these curves, the right-hand side of “1.19),
with the exclusion of the one term contsining N,, can be treated as a
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quadratic form in ||£ ]| = p, and ﬂqj§§= o. From this it follows that
for sufficiently small p the left side of the inequality (1.19) without
the linear term, will (on the curves 1,20) be less than some negative
definite form in p and 0. This means that the functional ule, f @), 7
satisfies all the conditions of the Theorem (31.4) of [3 ] when |p| > ﬁl,
|o| > ,, where ¥, is some number.

One can show that as p tends to zero the region |p|> M, |o|> N,
outside of which the left side of the inequality (1.19) on the curves
(1.20) is negative definite, also tends to zero, i.e. ”1'* 0 when p - 0.
In consequence of this, the region ¥ < [£. ], ¥ < |qjt also goes to zero.

Repeating now the arguments of the proof of the Theorem (31.4) of
[3 (p.185)], one can establish the validity of the first assertion of
the theorenm.

Next, we verify the asymptotic stability of the system (1.1). For
this purpose we consider two solutions of this system which differ in
their initial conditions, or two solutions of the system (1.10) with
different initiasl conditions. We will denote these solutions by the

SymbOIS Eil(t' p’)’ ﬂjl(t' Il)v and flz(t' "")' nj2(t' F)‘

Let us construct the differential equations with after-effect which
must be satisfied by the differences of these solutions:

a {t, By =, (L B —Eu(t m), B, m=my B —n 0 ) (121

On the basis of the Equations (1.21) and (1.10) we have

da, (¢, m m n
a ;t W D raet w4 DT @ t—8, m+ D) b, ()8, (¢ )
i=1 I==1 s=1
dB; (¢, -
B’fi W1 D iy (1) B, (t, 1) — Z A.Jk(t)[z ri ) 0 (8 1) +
‘ = k=1 1=
-;-%r (o, (¢t —8 5 i) ayy ()
F YOm0 w]— 3 a6, )~ 5, 1y (0, ) —
I==} k=1 1=1
m n
- Z h.fk(.t) 2 bkc ® Ba {t, n) (1.22)
k=1 8==1

Let us consider the positive definite functional of the variables t,
a,, and ﬁ% in the form
ult, a;(8), Bl=vlt, o, ()] +w(t, By (1.23)
which was constructed as before (1.15). For sufficiently small values
of the parameter pu, this functional has a negative definite total
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derivative d[t, ai(ﬁ), Bj]/dt, evaluated by the use of (1.22). This can
be verified in an analogous way as that used for the Equation (1.14).
Hence, the functional (1.23) insures the asymptotic stability of the
system of equations with after-effect (1.22). From the asymptotic sta-
bility of the system (1.22) follows the asymptotic stability of the
original system of equations with after-effect (1.1).

It remains to show that as g - 0, the quantity § also goes to zero.
Indeed, if p is sufficiently small, the derivative dult, fi(ﬁ), nj]/dt
will (in accordance with (1.16)) be a negative quantity, large in abso-
lute value, provided p remains small. But at the initial instant and
when ty — 6 <t < to the quantity p = 0, and it cannot increase much
during the short period t, < t < t; + 8, (6 > 0) because of its
integrability.

But since dult, fi('ﬁ), nj]/dt is a negative quantity, large in abso-
lute value, the positive definite functional ult, £ (), r,rj] has to de-
crease very rapidly. This can occur, however, only under the condition
that at a certain moment, ult, fi(_ﬁ), 17]-] comes close to zero. This
proves the theorem.

2. Nonlinear systems. Let us consider a system of nonlinear
differential equations with after-effect

dz, dy.

7 = XilZe Y, 2 (t —0), 2], }LTtJ‘:Yj[xs:yk,xz(t—e),t] (2.1)
i,s,l=1,...,.m

Tio = gio () when £, —O LTty Yio = bio (,’,k=1,,_,,n )

Here p is a small positive parameter, 6 is the constant time lag.
Xi [xsv Yky Z (t - e)r t] =
= X, [ %1y Tar v v or T Y1y Yoy < - r Yo o (8 — 0), 2 (8 —B), . o, 2 (£ —0), 2]

YJ [.’Es, Yk, X (t _ 9)5 t] =
= Y%, Tay o+ o1 Ty Y1s Y20 -+ s Yo T (t—0),2,(t—0), ..., 2, (t—0),¢]
Let us assume that the functions
Xi [xs, Yk Iy (t-—-e), t], YJ [IEs,yk,Zl (t-—O),t]
(iys,l=1,...,m; ,k=1,...,n)

have continuous bounded derivatives with respect to all their arguments
in the region |z | <, |y,| <o, tg <t <o, while

D(Y,Ys...,Y)
Dy, Y2, - - s Yy)

-0
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The degenerate system for the Equations (2.1), with g = 0, has the
form

dz, .

dt X [xs;yk,zl(t_e) t, yj[xSa Zlk,l’z(t_e),t] =0

Zio = gio (t)» to_e<t<to (2.2)

Let us suppose that the system of n equations Y[ x_, y,, x;(t - 9),
t] = 0 has a unique solution the set of functions Y= f T x,, x,(t -

, t] which have bounded partial derivatives with respect to all their
arguments (j = veu, D).

lLet us substitute y. = f [z, = (¢t -0), t] into the first m Equa-
tions (2.2), We thus o ta1n

dzx,
— = Xi [xsv fk (xs! ) (t _— 6)’ t)a x (t - 9)’ t] = Fi [xs’ 7] (t - 8)1 tl

di
Zig = Zio (t) when £, — 6 1Y, (2.3)

For the given initial condition, let us denote the solution of the
original system (2.1) by x; = x,(t, p), yi= yl(t #). For the corre-
sponding initial cond1t10ns we w1ll denote the solution of the degener-
ate system of Equations (2.2) by x; = x,(t),¥;=Y; (t)-f [z, (), x (¢~

), tl.

Let us set up the differential equations of the disturbed motion for
the given solution x; = z,(t) of the system (2.3) by starting out with
the equations z (t) = x; ( ) - z;(t), where x *(t) is the solution of
the system (2. 3) whlch corresponds to the change of the initial condi-
tions Ax;, = ;0" . We thus obtain

dz, (¢
2}2&%@+%MJW“W+%@—WHMEMMJM—mﬂz

= X {25(t) + 25 (2), [ 25 () + 25 (2), 20 (¢ —8) + z, (t — 0), 8], 5 (¢t —0) +
4z (t—0), ) — Xi{zo (1), fr [z (1), e (8 —0), 8], 2 (£ —0), 8} (2.4)

Let us suppose that the linear approximation of the system (2.4) is
wniformly asymptotically stable, i.e. the following system is asymptotic-
ally stable

O S 0 + Z T (t) 2 (t —6) (2.5)

s=1
vhere

3X af,
@ X
rig(t) = [ 7, + z‘ ayk oz, ](x,::xa(t))
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ax, L) A (2.6)
T (t) = [a‘z, = E] "By, 0z, (t — ) ](x,zx,(m
We will consider also the system of differential equations
dy.
_dT’- = YJ (d’u Yis Y1y B) (2'7)

where a, and y; have taken the places of x_(t), and x;(t -~ 6), while
replaces t.

Suppose that for all fixed values
a,=$s([3), Yl=xl(B—6)v |xs|<0'o, thr to<B<°°

one can find for the system (2.7) a constant symmetric matrix Ala,, y,,
B) which is uniformly bounded in a,, y; and 8, is positive definite, and
is such that the symmetrized matrix

o= (e L+ (L) (%) es

has negative characteristic numbers r that satisfy the inequality
ri<—9 mpr |¥;] < oo (y=const>0)

Under these conditions, any solution of the system (2.7) will be
asymptotically stable (see, for example, [4 (p.313)]) for arbitrary
initial conditions (yjo).

Theorem 2.1. Let the following conditions be satisfied for the system
of differential Equations (2.1).

1) The system of Equations (2.5) is uniformly asymptotically stable.

2) For every set of fixed values a_, y; and S, one can give for the
system of Equations (2.7) symmetric matrices A(a,, y;, f) which are uni-
formly bounded in a,, y;, B and are such that the symmetrized matrix
{B} ;, (2.8) has negative characteristic values satisfying the inequality

J
r.<-y (y = const > 0). Then, for small enough values of the parameter
p, the solution x,(t, p), yj(t 1) of the system of Equations (2.1) will
be uniformly asymptotically stable relative to small deviations x,, and
arbitrary deviations y;,; for any given numbers Q> 0, ¢ > 0 there
exists a number p, > 0 such that the next inequalities hold

it W) —z ()| <e, Jyi(t,p)—y; ()| <e whent>1(Q,e¢)
lyi(te m) —yi (L) [ < Q (2.9)

provided y < p,. Hereby p, may be chosen so small that t,, of condition
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(2.9), may differ from t, by less than any previously given number.

Proof. We will express the solution of the original system (2.1) in
terms of the solution of the degenerate system (2.2) by means of the
equations

gi(‘v p')=xi (t' !")“'3’; (t)v '], {t, P) =y, {t, P‘)—'f, I:E. i, P)a xl (‘—8; ﬂ), t}

and the use of the equalities

dE. (¢, p) dx, (1, p) "d‘i“)
dt =TTd T dt

dz, (t— 9, W) _ 9,

dn; (t B) _dy; (6, W) ___% 3; dey(t, p) 2 of; o
dt dt = oz, di ax, (t—9) dt at

Let us construct the system of differential equations of the disturbed
motion separately:

when ) ISl 9 (210}
d.
i-f;—‘"—z P O8 6 B S T O 8 =, )
8=l I=1 K==
dn; (W) Y;{a2 0, f[2° (0, o ¢ —0), th+ Mt w0 1 — ), 8}
a N -
m a i m m n
- [Z ra@E G B+ DT O (t—-e,m]—- D Hymy (1, 1)+
g==] 8 “l==x) =1 k=1
dg; (t
+ Ry G+ R = 3 g el
whenit > t,+ 0 2.11)

at, (&, oxy
BB _ S 086w+ S O -6, ")+Z——‘1k(‘ W+ R E)

dt
sl =1 k=1

dn; (6 By Y {a* (), f[o,* (1), & (¢ —0), t]+ e 0 W) 4 (6 —8), 8}

dt B
m of m m

-3 '57’[2 g Ot B+ 2 7 () ¢ — 9, N}—
8==1 5 Sley i=1

m

m
a
- Z:W(z/j:eﬁ [Zrone—ow + 3 m, 08 6—20, w]—

=1
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n n
— 2 Hym (6 ) — D) Hy*n (1 — 0, W)+ R; &) + By (1)
k=1 k=1

In (2.10) and (2.11), the symbols R. (fs) stand for the terms that con-
tain £y(¢t, p), £,(t -0, p) and &y(t - 26 @) and their linear combina-
tions raised to degree two or higher; the expressions

represent increments of the function Xi[’s' ypo xp(t = 0), t] with re-
spect to Vi expressed according to the theorem on finite differences;
finally, a*(t) = z,(t) + fs(t, w.

n

n
"'Ik(t B, 2 Hyng (2, ), 2 H}knk(t——e. »)
k=1 k=1

*

By the hypotheses of the theorem, the system (2.5) is uniformly
asymptotically stable. Hence, just as above in Section 1, there exists
for it a positive definite functional »[ & (9, £y(®, ..., & (0. tl=
v[ £,(9). t] which satisfies the conditions (1.12) to (1.14).

In the second condition of the theorem it is assumed that for any set
of fixed values

a,=z,(t)=z,8), T=750—0=7@B—-0), B=t (b SB<Lo0)

there exist .for the system (2.7) symmetric matrices A(as, Y f3) which
are uniformly bounded in a,, y; and B, and which have positive character-
istic values satisfying the Equations (2.8).

It is hereby assumed that the matrix { B }jk has negative character-
istic values that satisfy the condition r. < ~ y (y = const > 0). Hence,
for the system (2.7) there exists a positive definite Liapunov function

w(ag T B = (@ T By M M e M) M= — fy (@ T B)

whose total derivative, with a e Y1 and S constant, computed on the
basis of (2.7), will satisfy the inequalities (16.22) of {3 (Section

16) 1.
Let us construct the positive definite functional of the form
ult, & (9), 'fljl=v[§i(\‘)), t] 4wz, (2), 2, (¢t —0), t, Myl (2.12)

One can show that the total derivatives of this functional dult,
£, t]/dt, computed with the aid of the system of equations of the
disturbed motion (2.10) and (2.11) for sufficiently small values of u,
will be negative in the region
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|§i|>Mv mjl>Mr M>0

We will not write out explicitly the expressions for the derivatives;
we note only that although the derivatives du/dt, computed on the basis
of the equations of the disturbed motion (2.10) and (2.11), are of a
somewhat more complicated form than in the linear case treated above,
nevertheless, one can carry out the arguments on the estimate of du/dt
in the same way as before (Section 1). Even though one has to consider
here functions which are not quadratic forms, the inequalities which are
characteristic for quadratic forms still remain valid. Thus we come to
the conclusion of the negative definiteness of du/dt outside the region
[€:1> 4, Iqj| > M for small enough values of the parameter g > 0.

Furthermore, just as for systems of linear equations, one cam prove
that the region [£;]| > ¥, |nj| > M, ¥> 0 tends to zero wher pu goes to
zero. This helps to convince us of the correctness of the formulated
theoren.
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